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• Remember the simple n-gram language model

o Assigns probabilities to sequences of words

o Generate text by sampling possible next words

o Is trained on counts computed from lots of text

• Large language models are similar and different:

o Assigns probabilities to sequences of words

o Generate text by sampling possible next words

o Are trained by learning to guess the next word

Language models
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• Even through pretrained only to predict words

• Learn a lot of useful language knowledge

• Since training on a lot of text

Large language models
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Three architectures for large language models

6

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• How do we train them to build strong representations?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?
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Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• How do we train them to build strong representations?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

Decoders
GPT, Claude, Llama, Mixtral

Encoders
BERT family, HuBERT

Encoder-decoders
Flan-T5, Whisper
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• Many varieties!

o Popular: Masked Language Models (MLMs)

o BERT family

o Trained by predicting words from surrounding words on both sides

o Are usually finetuned (trained on supervised data) for classification tasks.

Encoders
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Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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• Trained to map from one sequence to another

• Very popular for:

o machine translation (map from one language to another)

o speech recognition (map from acoustics to words)

Encoder-Decoders
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Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Many tasks can be turned into tasks of 

predicting words!
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Big idea
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• Also called:
o Causal LLMs

o Autoregressive LLMs

o Left-to-right LLMs

o Predict words left to right

This lecture: decoder-only models

11

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.
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Conditional Generation: Generating text conditioned on 
previous text!
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• Sentiment analysis: “I like Jackie Chan”

1. We give the language model this string:

The sentiment of the sentence "I like 

Jackie Chan" is:  

2. And see what word it thinks comes next:

Many practical NLP tasks can be cast as word prediction!
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Figure 10.1 Left-to-right (also called autoregressive) text completion with transformer-based large language
models. As each token is generated, it gets added onto the context as a prefix for generating the next token.

word “negative” to see which is higher:

P(positive|The sentiment of the sentence ‘‘I like Jackie Chan" is:)
P(negative|The sentiment of the sentence ‘‘I like Jackie Chan" is:)

If the word “positive” is more probable, we say the sentiment of the sentence is
positive, otherwise we say the sentiment is negative.

We can also cast more complex tasks as word prediction. Consider question
answering, in which the system is given a question (for example a question with
a simple factual answer) and must give a textual answer; we introduce this task in
detail in Chapter 15. We can cast the task of question answering as word prediction
by giving a language model a question and a token like A: suggesting that an answer
should come next:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute the probability distribution over possible
next words given this prefix:

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A:)

and look at which words w have high probabilities, we might expect to see that
Charles is very likely, and then if we choose Charles and continue and ask

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A: Charles)

we might now see that Darwin is the most probable token, and select it.
Conditional generation can even be used to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to take a longtext
summarization

text, such as a full-length article, and produce an effective shorter summary of it. We
can cast summarization as language modeling by giving a large language model a
text, and follow the text by a token like tl;dr; this token is short for something like

13
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• QA: “Who wrote The Origin of Species”
1. We give the language model this string:

2. And see what word it thinks comes next:

3. And iterate:

Framing lots of tasks as conditional generation
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Figure 10.15 Autoregressive text completion with transformer-based large language models.

word “negative” to see which is higher:

P(positive|The sentiment of the sentence “I like Jackie Chan” is:)
P(negative|The sentiment of the sentence “I like Jackie Chan” is:)

If the word “positive” is more probable, we say the sentiment of the sentence is
positive, otherwise we say the sentiment is negative.

We can also cast more complex tasks as word prediction. Consider the task
of answering simple questions, a task we return to in Chapter 14. In this task the
system is given some question and must give a textual answer. We can cast the task
of question answering as word prediction by giving a language model a question and
a token like A: suggesting that an answer should come next:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute

P(w|Q: Who wrote the book “The Origin of Species”? A:)

and look at which words w have high probabilities, we might expect to see that
Charles is very likely, and then if we choose Charles and continue and ask

P(w|Q: Who wrote the book “The Origin of Species”? A: Charles)

we might now see that Darwin is the most probable word, and select it.
Conditional generation can even be used to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to take a longtext

summarization

text, such as a full-length article, and produce an effective shorter summary of it.
We can cast summarization as language modeling by giving a large language model
a text, and follow the text by a token like tl;dr; this token is short for something
like ‘too long; don’t read’ and in recent years people often use this token, especially
in informal work emails, when they are going to give a short summary. We can
then do conditional generation: give the language model this prefix, and then ask
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We can also cast more complex tasks as word prediction. Consider question
answering, in which the system is given a question (for example a question with
a simple factual answer) and must give a textual answer; we introduce this task in
detail in Chapter 15. We can cast the task of question answering as word prediction
by giving a language model a question and a token like A: suggesting that an answer
should come next:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute the probability distribution over possible
next words given this prefix:

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A:)

and look at which words w have high probabilities, we might expect to see that
Charles is very likely, and then if we choose Charles and continue and ask

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A: Charles)

we might now see that Darwin is the most probable token, and select it.
Conditional generation can even be used to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to take a longtext
summarization

text, such as a full-length article, and produce an effective shorter summary of it. We
can cast summarization as language modeling by giving a large language model a
text, and follow the text by a token like tl;dr; this token is short for something like
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Summarization

15

4 CHAPTER 10 • LARGE LANGUAGE MODELS

‘too long; didn’t read’ and in recent years people often use this token, especially in
informal work emails, when they are going to give a short summary. Since this token
is sufficiently frequent in language model training data, language models have seen
many texts in which the token occurs before a summary, and hence will interpret the
token as instructions to generate a summary. We can then do conditional generation:
give the language model this prefix, and then have it generate the following words,
one by one, and take the entire response as a summary. Fig. 10.2 shows an example
of a text and a human-produced summary from a widely-used summarization corpus
consisting of CNN and Daily Mirror news articles.

Original Article
The only thing crazier than a guy in snowbound Massachusetts boxing up the powdery white stuff
and offering it for sale online? People are actually buying it. For $89, self-styled entrepreneur
Kyle Waring will ship you 6 pounds of Boston-area snow in an insulated Styrofoam box – enough
for 10 to 15 snowballs, he says.
But not if you live in New England or surrounding states. “We will not ship snow to any states
in the northeast!” says Waring’s website, ShipSnowYo.com. “We’re in the business of expunging
snow!”
His website and social media accounts claim to have filled more than 133 orders for snow – more
than 30 on Tuesday alone, his busiest day yet. With more than 45 total inches, Boston has set a
record this winter for the snowiest month in its history. Most residents see the huge piles of snow
choking their yards and sidewalks as a nuisance, but Waring saw an opportunity.
According to Boston.com, it all started a few weeks ago, when Waring and his wife were shov-
eling deep snow from their yard in Manchester-by-the-Sea, a coastal suburb north of Boston. He
joked about shipping the stuff to friends and family in warmer states, and an idea was born. [...]

Summary
Kyle Waring will ship you 6 pounds of Boston-area snow in an insulated Styrofoam box – enough
for 10 to 15 snowballs, he says. But not if you live in New England or surrounding states.

Figure 10.2 Excerpt from a sample article and its summary from the CNN/Daily Mail summarization corpus
(Hermann et al., 2015), (Nallapati et al., 2016).

If we take this full article and append the token tl;dr, we can use this as the con-
text to prime the generation process to produce a summary as illustrated in Fig. 10.3.
Again, what makes transformers able to succeed at this task (as compared, say, to
the primitive n-gram language model) is that attention can incorporate information
from the large context window, giving the model access to the original article as well
as to the newly generated text throughout the process.

Which words do we generate at each step? One simple way to generate words
is to always generate the most likely word given the context. Generating the most
likely word given the context is called greedy decoding. A greedy algorithm is onegreedy

decoding
that make a choice that is locally optimal, whether or not it will turn out to have
been the best choice with hindsight. Thus in greedy decoding, at each time step in
generation, the output yt is chosen by computing the probability for each possible
output (every word in the vocabulary) and then choosing the highest probability
word (the argmax):

ŵt = argmaxw2V P(w|w<t) (10.1)

In practice, however, we don’t use greedy decoding with large language models.
A major problem with greedy decoding is that because the words it chooses are (by
definition) extremely predictable, the resulting text is generic and often quite repeti-
tive. Indeed, greedy decoding is so predictable that it is deterministic; if the context
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LLMs for summarization (using  tl;dr)
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• This task of choosing a word to generate based on the model’s probabilities is 

called decoding. 

• The most common method for decoding in LLMs: sampling. 

• Sampling from a model’s distribution over words:

o choose random words according to their probability assigned by the model. 

• After each token we’ll sample words to generate according to their probability 

conditioned on our previous choices, 

o A transformer language model will give the probability

Decoding and Sampling
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Random sampling

19
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as defined by the model. Thus we are more likely to generate words that the model
thinks have a high probability in the context and less likely to generate words that
the model thinks have a low probability.

We saw back in Chapter 3 on page ?? how to generate text from a unigram lan-
guage model , by repeatedly randomly sampling words according to their probability
until we either reach a pre-determined length or select the end-of-sentence token. To
generate text from a trained transformer language model we’ll just generalize this
model a bit: at each step we’ll sample words according to their probability condi-
tioned on our previous choices, and we’ll use a transformer language model as the
probability model that tells us this probability.

We can formalize this algorithm for generating a sequence of words W = w1,w2, . . . ,wN
until we hit the end-of-sequence token, using x ⇠ p(x) to mean ‘choose x by sam-
pling from the distribution p(x):

i 1
wi ⇠ p(w)
while wi != EOS

i i + 1
wi ⇠ p(wi | w<i)

The algorithm above is called random sampling, and it turns out random sam-random
sampling

pling doesn’t work well enough. The problem is that even though random sampling
is mostly going to generate sensible, high-probable words, there are many odd, low-
probability words in the tail of the distribution, and even though each one is low-
probability, if you add up all the rare words, they constitute a large enough portion
of the distribution that they get chosen often enough to result in generating weird
sentences. For this reason, instead of random sampling, we usually use sampling
methods that avoid generating the very unlikely words.

The sampling methods we introduce below each have parameters that enable
trading off two important factors in generation: quality and diversity. Methods
that emphasize the most probable words tend to produce generations that are rated
by people as more accurate, more coherent, and more factual, but also more boring
and more repetitive. Methods that give a bit more weight to the middle-probability
words tend to be more creative and more diverse, but less factual and more likely to
be incoherent or otherwise low-quality.

10.2.1 Top-k sampling
Top-k sampling is a simple generalization of greedy decoding. Instead of choosingtop-k sampling

the single most probable word to generate, we first truncate the distribution to the
top k most likely words, renormalize to produce a legitimate probability distribution,
and then randomly sample from within these k words according to their renormalized
probabilities. More formally:

1. Choose in advance a number of words k

2. For each word in the vocabulary V , use the language model to compute the
likelihood of this word given the context p(wt |w<t)

3. Sort the words by their likelihood, and throw away any word that is not one of
the top k most probable words.

4. Renormalize the scores of the k words to be a legitimate probability distribu-
tion.

19
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• Even though random sampling mostly generate sensible, high-probable 

words, 

• There are many odd, low- probability words in the tail of the distribution 

• Each one is low- probability but added up they constitute a large portion of 

the distribution 

• So they get picked enough to generate weird sentences

Random sampling doesn't work very well
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• Emphasize high-probability words 

 + quality: more  accurate, coherent, and factual, 

 - diversity: boring, repetitive. 

• Emphasize middle-probability words 

 + diversity: more creative, diverse, 

 - quality: less factual, incoherent

Factors in word sampling: quality and diversity

21
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1. Choose # of words k 

2. For each word in the vocabulary V , use the language model to compute the 

likelihood of this word given the context p(wt |w<t ) 

3.  Sort the words by likelihood, keep only the top k most probable words. 

4. Renormalize the scores of the k words to be a legitimate probability distribution. 

5. Randomly sample a word from within these remaining k most-probable words 

according to its probability. 

Top-k sampling:

22
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• Problem with top-k:  k is fixed so may cover very different amounts of 

probability mass in different situations

• Idea: Instead, keep the top p percent of the probability mass

• Given a distribution P(wt |w<t ), the top-p vocabulary V ( p) is the smallest set 

of words such that 

Top-p sampling (= nucleus sampling)
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5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.
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• Reshape the distribution instead of truncating it

• Intuition from thermodynamics, 

o a system at high temperature is flexible and can explore many possible states,

o a system at lower temperature is likely to explore a subset of lower energy (better) states.

•  In low-temperature sampling,  (τ ≤ 1) we smoothly

o increase the probability of the most probable words

o decrease the probability of the rare words. 

Temperature sampling

24
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• Divide the logit by a temperature parameter τ before passing it through the 

softmax.

• Instead of

• We do  

Temperature sampling
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5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.
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probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.
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distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.
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2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.
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• Why does this work?

o When τ is close to 1 the distribution doesn’t change much. 

o The lower τ is, the larger the scores being passed to the softmax

o Softmax pushes high values toward 1 and low values toward 0. 

o Large inputs pushes high-probability words higher and low probability word lower,  

making the distribution more greedy. 

o As τ approaches 0, the probability of most likely word approaches 1 

Temperature sampling
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5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.

0 ≤ τ ≤ 1 
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• The big idea that underlies all the amazing performance of language models

• First pretrain a transformer model on enormous amounts of text

• Then apply it to new tasks.

Pretraining

28
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• We just train them to predict the next word!
1. Take a corpus of text 

2. At each time step t 
I. ask the model to predict the next word 

II. train the model using gradient descent to minimize the error in this prediction

o "Self-supervised" because it just uses the next word as the label!

Self-supervised training algorithm

29
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• Same loss function: cross-entropy loss

o We want the model to assign a high probability to true word w

o = want loss to be high if the model assigns too low a probability to w

• CE Loss: The negative log probability that the model assigns to the true next 

word w

o If the model assigns too low a probability to w

o We move the model weights in the direction that assigns a higher probability to w

Intuition of language model training: loss

30
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• CE loss: difference between the correct probability distribution and the predicted distribution 

• The correct distribution yt knows the next word, so is 1 for the actual next word and 

0 for the others.

• So in this sum, all terms get multiplied by zero except one: the logp the model 

assigns to the correct next word, so:

•  

Cross-entropy loss for language modeling
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Note, by the way, that there can be other situations where we may want to do
something quite different and flatten the word probability distribution instead of
making it greedy. Temperature sampling can help with this situation too, in this case
high-temperature sampling, in which case we use t > 1.

10.3 Pretraining Large Language Models

How do we teach a transformer to be a language model? What is the algorithm and
what data do we train on?

10.3.1 Self-supervised training algorithm
To train a transformer as a language model, we use the same self-supervision (orself-supervision

self-training) algorithm we saw in Section ??: we take a corpus of text as training
material and at each time step t ask the model to predict the next word. We call
such a model self-supervised because we don’t have to add any special gold labels
to the data; the natural sequence of words is its own supervision! We simply train the
model to minimize the error in predicting the true next word in the training sequence,
using cross-entropy as the loss function.

Recall that the cross-entropy loss measures the difference between a predicted
probability distribution and the correct distribution.

LCE = �
X

w2V

yt [w] log ŷt [w] (10.5)

In the case of language modeling, the correct distribution yt comes from knowing the
next word. This is represented as a one-hot vector corresponding to the vocabulary
where the entry for the actual next word is 1, and all the other entries are 0. Thus,
the cross-entropy loss for language modeling is determined by the probability the
model assigns to the correct next word (all other words get multiplied by zero). So
at time t the CE loss in (10.5) can be simplified as the negative log probability the
model assigns to the next word in the training sequence.

LCE(ŷt ,yt) = � log ŷt [wt+1] (10.6)

Thus at each word position t of the input, the model takes as input the correct se-
quence of tokens w1:t , and uses them to compute a probability distribution over
possible next words so as to compute the model’s loss for the next token wt+1. Then
we move to the next word, we ignore what the model predicted for the next word
and instead use the correct sequence of tokens w1:t+1 to estimate the probability of
token wt+2. This idea that we always give the model the correct history sequence to
predict the next word (rather than feeding the model its best case from the previous
time step) is called teacher forcing.teacher forcing

Fig. 10.4 illustrates the general training approach. At each step, given all the
preceding words, the final transformer layer produces an output distribution over
the entire vocabulary. During training, the probability assigned to the correct word
is used to calculate the cross-entropy loss for each item in the sequence. The loss
for a training sequence is the average cross-entropy loss over the entire sequence.
The weights in the network are adjusted to minimize the average CE loss over the
training sequence via gradient descent.
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Note, by the way, that there can be other situations where we may want to do
something quite different and flatten the word probability distribution instead of
making it greedy. Temperature sampling can help with this situation too, in this case
high-temperature sampling, in which case we use t > 1.

10.3 Pretraining Large Language Models

How do we teach a transformer to be a language model? What is the algorithm and
what data do we train on?

10.3.1 Self-supervised training algorithm
To train a transformer as a language model, we use the same self-supervision (orself-supervision

self-training) algorithm we saw in Section ??: we take a corpus of text as training
material and at each time step t ask the model to predict the next word. We call
such a model self-supervised because we don’t have to add any special gold labels
to the data; the natural sequence of words is its own supervision! We simply train the
model to minimize the error in predicting the true next word in the training sequence,
using cross-entropy as the loss function.

Recall that the cross-entropy loss measures the difference between a predicted
probability distribution and the correct distribution.

LCE = �
X

w2V

yt [w] log ŷt [w] (10.5)
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and instead use the correct sequence of tokens w1:t+1 to estimate the probability of
token wt+2. This idea that we always give the model the correct history sequence to
predict the next word (rather than feeding the model its best case from the previous
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Fig. 10.4 illustrates the general training approach. At each step, given all the
preceding words, the final transformer layer produces an output distribution over
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• At each token position t, model sees correct tokens w1:t’ 

oComputes  loss (–log probability) for the next token wt+1 

• At next token position t+1 we ignore what model predicted for wt+1 

o Instead we take the correct word wt+1, add it to context, move on

Teacher forcing
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Training a transformer language model

33
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Week 8. 5 - Pretraining data for LLMs
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• Common crawl, snapshots of the entire web produced by the non- profit 

Common Crawl with billions of pages

• Colossal Clean Crawled Corpus (C4; Raffel et al. 2020), 156 billion tokens of 

English,  filtered
o What's in it? Mostly patent text documents, Wikipedia, and news sites 

LLMs are mainly trained on the web

35
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The Pile: a pretraining corpus

36

Figure 1: Treemap of Pile components by effective size.

troduce a new filtered subset of Common Crawl,
Pile-CC, with improved extraction quality.

Through our analyses, we confirm that the Pile is
significantly distinct from pure Common Crawl
data. Additionally, our evaluations show that the
existing GPT-2 and GPT-3 models perform poorly
on many components of the Pile, and that models
trained on the Pile significantly outperform both
raw and filtered Common Crawl models. To com-
plement the performance evaluations, we also per-
form an exploratory analysis of the text within the
Pile to provide a detailed picture of the data. We
hope that our extensive documentation of the con-
struction and characteristics of the Pile will help
researchers make informed decisions about poten-
tial downstream applications.

Finally, we make publicly available the preprocess-
ing code for the constituent datasets of the Pile and
the code for constructing alternative versions2. In
the interest of reproducibility, we also document
all processing performed on each dataset (and the
Pile as a whole) in as much detail as possible. For
further details about the processing of each dataset,
see Section 2 and Appendix C.

2
https://github.com/EleutherAI/

the-pile

1.1 Contributions
The core contributions of this paper are:

1. The introduction of a 825.18 GiB english-
language dataset for language modeling com-
bining 22 diverse sources.

2. The introduction of 14 new language model-
ing datasets, which we expect to be of inde-
pendent interest to researchers.

3. Evaluations demonstrating significant im-
provements across many domains by GPT-2-
sized models trained on this new dataset, com-
pared to training on CC-100 and raw Common
Crawl.

4. The investigation and documentation of this
dataset, which we hope will better inform re-
searchers about how to use it as well as moti-
vate them to undertake similar investigations
of their own data.

2 The Pile Datasets

The Pile is composed of 22 constituent sub-datasets,
as shown in Table 1. Following Brown et al. (2020),
we increase the weights of higher quality compo-
nents, with certain high-quality datasets such as
Wikipedia being seen up to 3 times (“epochs”) for

2

webacademics books
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• Quality is subjective

o Many LLMs attempt to match Wikipedia, books, particular websites

o Need to remove boilerplate, adult content

o Deduplication at many levels (URLs, documents, even lines)

• Safety also subjective

o Toxicity detection is important, although that has mixed results

o Can mistakenly flag data written in dialects like African American English

Filtering for quality and safety

37
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• There are canines everywhere! One dog in the front room, and two dogs

• It wasn't just big it was enormous

• The author of "A Room of One's Own" is Virginia Woolf

• The doctor told me that he

• The square root of 4 is 2

What does a model learn from pretraining?

38
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Text contains enormous amounts of knowledge

Pretraining on lots of text with all that knowledge is 

what gives language models their ability to do so much

39

Big idea
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• Copyright: much of the text in these datasets is copyrighted

o Not clear if fair use doctrine in US allows for this use

o This remains an open legal question

• Data consent:

o Website owners can indicate they don't want their site crawled

• Privacy:

o Websites can contain private IP addresses and phone numbers

But there are problems with scraping from the web

40
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• What happens if we need our LLM to work well on a domain it didn't see in 

pretraining?

• Perhaps some specific medical or legal domain?

• Or maybe a multilingual LM needs to see more data on some language that 

was rare in pretraining?

Finetuning for adaptation to new domains
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Finetuning

43

Fine-
tuning 
Data

Pretraining Data

Pretraining
… … …

Fine-tuning
… … …

Pretrained LM Fine-tuned LM
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• We'll discuss 1 here, and 3 in later lectures

• In all four cases, finetuning means:

otaking a pretrained model and further adapting some or all of its 

parameters to some new data

"Finetuning" means 4 different things

44

44

D e a k in  U n iv e rs it y  C R IC O S  P ro v id e r  C o d e :  0 0 1 1 3 B

• Further train all the parameters of model on new data

• using the same method (word prediction) and loss function (cross-

entropy loss) as for pretraining.

• as if the new data were at the tail end of the pretraining data

• Hence sometimes called continued pretraining

1. Finetuning as "continued pretraining" on new data

45
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• Just as for n-gram grammars, we use perplexity to measure how well the LM 

predicts unseen text

• The perplexity of a model θ on an unseen test set is the inverse probability 

that θ assigns to the test set, normalized by the test set length. 

• For a test set of n tokens w1:n the perplexity is :

Perplexity

47
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the pretraining data, and so you’ll sometimes see this method called continued pre-
training.continued

pretraining
Retraining all the parameters of the model is very slow and expensive when the

language model is huge. So instead we can freeze some of the parameters (i.e., leavefreeze
them unchanged from their pretrained value) and train only a subset of parameters
on the new data. In Section 10.5.3 we’ll describe this second variety of finetun-
ing, called parameter-efficient finetuning, or PEFT. because we efficiently select
specific parameters to update when finetuning, and leave the rest in their pretrained
values.

In Chapter 11 we’ll introduce a third kind of finetuning, also parameter-efficient.
In this version, the goal is to use a language model as a kind of classifier or labeler
for a specific task. For example we might train the model to be a sentiment classifier.
We do this by adding extra neural circuitry (an extra head) after the top layer of the
model. This classification head takes as input some of the top layer embeddings of
the transformer and produces as output a classification. In this method, most com-
monly used with masked language models like BERT, we freeze the entire pretrained
model and only train the classification head on some new data, usually labeled with
some class that we want to predict.

Finally, in Chapter 12 we’ll introduce a fourth kind of finetuning, that is a cru-
cial component of the largest language models: supervised finetuning or SFT. SFT
is often used for instruction finetuning, in which we want a pretrained language
model to learn to follow text instructions, for example to answer questions or follow
a command to write something. Here we create a dataset of prompts and desired
responses (for example questions and their answers, or commands and their ful-
fillments), and we train the language model using the normal cross-entropy loss to
predict each token in the instruction prompt iteratively, essentially training it to pro-
duce the desired response from the command in the prompt. It’s called supervised
because unlike in pretraining, where we just take any data and predict the words in
it, we build the special finetuning dataset by hand, creating supervised responses to
each command.

Often everything that happens after pretraining is lumped together as post-training;
we’ll discuss the various parts of post-training in Chapter 12 and Chapter 13.

10.4 Evaluating Large Language Models

Perplexity As we first saw in Chapter 3, one way to evaluate language models is
to measure how well they predict unseen text. Intuitively, good models are those that
assign higher probabilities to unseen data (are less surprised when encountering the
new words).

We instantiate this intuition by using perplexity to measure the quality of aperplexity

language model. Recall from page ?? that the perplexity of a model q on an unseen
test set is the inverse probability that q assigns to the test set, normalized by the test
set length. For a test set of n tokens w1:n, the perplexity is

Perplexityq (w1:n) = Pq (w1:n)
� 1

n

= n

s
1

Pq (w1:n)
(10.7)

To visualize how perplexity can be computed as a function of the probabilities the
47
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• Probability depends on size of test set

• Probability gets smaller the longer the text

• Better: a metric that is per-word, normalized by length

• Perplexity is the inverse probability of the test set, normalized by the number of 

words
(The inverse comes from the original definition of perplexity from cross-entropy rate in 

information theory)

Probability range is  [0,1], perplexity range is [1,∞]

Why perplexity instead of raw probability of the test set?

48
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• The higher the probability of the word sequence, the lower the perplexity.

• Thus the lower the perplexity of a model on the data, the better the model. 

• Minimizing perplexity is the same as maximizing probability

Also: perplexity is sensitive to length/tokenization so best used when 

comparing LMs that use the same tokenizer. 

Perplexity

49
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• Size

 Big models take lots of GPUs and time to train, memory to store

• Energy usage

 Can measure kWh or kilograms of CO2 emitted 

• Fairness

 Benchmarks measure gendered and racial stereotypes, or decreased 

performance for language from or about some groups. 

Many other factors that we evaluate, like:
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• LLM performance depends on
• Model size: the number of parameters not counting embeddings

• Dataset size: the amount of training data

• Compute: Amount of compute (in FLOPS or etc

• Can improve a model by adding  parameters (more layers, wider contexts), 
more data, or training for more iterations
• The performance of a large language model (the loss) scales as a power-law 

with each of these three

Scaling Laws

52
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• Loss L as a function of # parameters N, dataset size D, compute budget C (if other two are 

held constant)

• Scaling laws can be used early in training to predict what the loss would be if we were to 

add more data or increase model size. 

Scaling Laws
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10.5 Dealing with Scale

Large language models are large. For example the Llama 3.1 405B Instruct model
from Meta has 405 billion parameters (126 layers, a model dimensionality of 16,384,
128 attention heads) and was trained on 15.6 terabytes of text tokens (Llama Team,
2024), using a vocabulary of 128K tokens. So there is a lot of research on un-
derstanding how LLMs scale, and especially how to implement them given limited
resources. In the next few sections we discuss how to think about scale (the concept
of scaling laws), and important techniques for getting language models to work
efficiently, such as the KV cache and parameter-efficient fine tuning.

10.5.1 Scaling laws
The performance of large language models has shown to be mainly determined by
3 factors: model size (the number of parameters not counting embeddings), dataset
size (the amount of training data), and the amount of compute used for training. That
is, we can improve a model by adding parameters (adding more layers or having
wider contexts or both), by training on more data, or by training for more iterations.

The relationships between these factors and performance are known as scaling
laws. Roughly speaking, the performance of a large language model (the loss) scalesscaling laws

as a power-law with each of these three properties of model training.
For example, Kaplan et al. (2020) found the following three relationships for

loss L as a function of the number of non-embedding parameters N, the dataset size
D, and the compute budget C, for models training with limited parameters, dataset,
or compute budget, if in each case the other two properties are held constant:

L(N) =

✓
Nc

N

◆aN

(10.9)

L(D) =

✓
Dc

D

◆aD

(10.10)

L(C) =

✓
Cc

C

◆aC

(10.11)

The number of (non-embedding) parameters N can be roughly computed as fol-
lows (ignoring biases, and with d as the input and output dimensionality of the
model, dattn as the self-attention layer size, and dff the size of the feedforward layer):

N ⇡ 2 d nlayer(2 dattn +dff)

⇡ 12 nlayer d2 (10.12)

(assuming dattn = dff/4 = d)

Thus GPT-3, with n = 96 layers and dimensionality d = 12288, has 12 ⇥ 96 ⇥
122882 ⇡ 175 billion parameters.

The values of Nc, Dc, Cc, aN , aD, and aC depend on the exact transformer
architecture, tokenization, and vocabulary size, so rather than all the precise values,
scaling laws focus on the relationship with loss.2

Scaling laws can be useful in deciding how to train a model to a particular per-
formance, for example by looking at early in the training curve, or performance with

2 For the initial experiment in Kaplan et al. (2020) the precise values were aN = 0.076, Nc = 8.8 ⇥1013

(parameters), aD = 0.095, Dc = 5.4 ⇥1013 (tokens), aC = 0.050, Cc = 3.1 ⇥108 (petaflop-days).
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• Thus GPT-3, with n = 96 layers and dimensionality d = 12288, has 12 × 96 × 

122882 ≈ 175 billion parameters. 

Number of non-embedding parameters N
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10.5 Dealing with Scale

Large language models are large. For example the Llama 3.1 405B Instruct model
from Meta has 405 billion parameters (126 layers, a model dimensionality of 16,384,
128 attention heads) and was trained on 15.6 terabytes of text tokens (Llama Team,
2024), using a vocabulary of 128K tokens. So there is a lot of research on un-
derstanding how LLMs scale, and especially how to implement them given limited
resources. In the next few sections we discuss how to think about scale (the concept
of scaling laws), and important techniques for getting language models to work
efficiently, such as the KV cache and parameter-efficient fine tuning.

10.5.1 Scaling laws
The performance of large language models has shown to be mainly determined by
3 factors: model size (the number of parameters not counting embeddings), dataset
size (the amount of training data), and the amount of compute used for training. That
is, we can improve a model by adding parameters (adding more layers or having
wider contexts or both), by training on more data, or by training for more iterations.

The relationships between these factors and performance are known as scaling
laws. Roughly speaking, the performance of a large language model (the loss) scalesscaling laws

as a power-law with each of these three properties of model training.
For example, Kaplan et al. (2020) found the following three relationships for

loss L as a function of the number of non-embedding parameters N, the dataset size
D, and the compute budget C, for models training with limited parameters, dataset,
or compute budget, if in each case the other two properties are held constant:

L(N) =

✓
Nc

N

◆aN

(10.9)

L(D) =

✓
Dc

D

◆aD

(10.10)

L(C) =

✓
Cc

C

◆aC

(10.11)

The number of (non-embedding) parameters N can be roughly computed as fol-
lows (ignoring biases, and with d as the input and output dimensionality of the
model, dattn as the self-attention layer size, and dff the size of the feedforward layer):

N ⇡ 2 d nlayer(2 dattn +dff)

⇡ 12 nlayer d2 (10.12)

(assuming dattn = dff/4 = d)

Thus GPT-3, with n = 96 layers and dimensionality d = 12288, has 12 ⇥ 96 ⇥
122882 ⇡ 175 billion parameters.

The values of Nc, Dc, Cc, aN , aD, and aC depend on the exact transformer
architecture, tokenization, and vocabulary size, so rather than all the precise values,
scaling laws focus on the relationship with loss.2

Scaling laws can be useful in deciding how to train a model to a particular per-
formance, for example by looking at early in the training curve, or performance with

2 For the initial experiment in Kaplan et al. (2020) the precise values were aN = 0.076, Nc = 8.8 ⇥1013

(parameters), aD = 0.095, Dc = 5.4 ⇥1013 (tokens), aC = 0.050, Cc = 3.1 ⇥108 (petaflop-days).
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• In training, we can compute attention very efficiently in parallel:

• But not at inference! We generate the next tokens one at a time!

• For a new token x, need to multiply by WQ , WK, and WV to get query, key, values

• But don't want to recompute the key and value vectors for all the prior tokens x< i

• Instead, store key and value vectors in memory in the KV cache, and then we can 

just grab them from the cache 

KV Cache
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smaller amounts of data, to predict what the loss would be if we were to add more
data or increase model size. Other aspects of scaling laws can also tell us how much
data we need to add when scaling up a model.

10.5.2 KV Cache
We saw in Fig. ?? and in Eq. ?? (repeated below) how the attention vector can be
very efficiently computed in parallel for training, via two matrix multiplications:

A = softmax
✓
QK

|
p

dk

◆
V (10.13)

Unfortunately we can’t do quite the same efficient computation in inference as
in training. That’s because at inference time, we iteratively generate the next tokens
one at a time. For a new token that we have just generated, call it xi, we need to
compute its query, key, and values by multiplying by W

Q, WK, and W
V respec-

tively. But it would be a waste of computation time to recompute the key and value
vectors for all the prior tokens x<i; at prior steps we already computed these key
and value vectors! So instead of recomputing these, whenever we compute the key
and value vectors we store them in memory in the KV cache, and then we can justKV cache
grab them from the cache when we need them. Fig. 10.7 modifies Fig. ?? to show
the computation that takes place for a single new token, showing which values we
can take from the cache rather than recompute.

q4

k1 k2 k4

Q
KT

QKT

v1

v2

v3

v4

V

q4•k1 q4•k2 q4•k3 q4•k4

x = =x

a4

A

1 x dk

dk x N

1 x N N x dv 1 x dv

k3

Figure 10.7 Parts of the attention computation (extracted from Fig. ??) showing, in black,
the vectors that can be stored in the cache rather than recomputed when computing the atten-
tion score for the 4th token.

10.5.3 Parameter Efficient Fine Tuning
As we mentioned above, it’s very common to take a language model and give it more
information about a new domain by finetuning it (continuing to train it to predict
upcoming words) on some additional data.

Fine-tuning can be very difficult with very large language models, because there
are enormous numbers of parameters to train; each pass of batch gradient descent
has to backpropagate through many many huge layers. This makes finetuning huge
language models extremely expensive in processing power, in memory, and in time.
For this reason, there are alternative methods that allow a model to be finetuned
without changing all the parameters. Such methods are called parameter-efficient
fine tuning or sometimes PEFT, because we efficiently select a subset of parameters

parameter-
efficient fine

tuning
PEFT to update when finetuning. For example we freeze some of the parameters (don’t

change them), and only update some particular subset of parameters.
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KV Cache
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• Adapting to a new domain by continued pretraining (finetuning) is a problem with 

huge LLMs.

o Enormous numbers of parameters to train 

o Each pass of batch gradient descent has to backpropagate through many many huge layers. 

o Expensive in processing power, in memory, and in time. 

• Instead, parameter-efficient fine tuning (PEFT)

o Efficiently select a subset of parameters to update when finetuning.

o E.g., freeze some of the parameters (don’t change them), 

o And only update some a few parameters. 

Parameter-Efficient Finetuning
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• Trransformers have many dense matrix multiply layers

• Like WQ, WK, WV, WO layers in attention

• Instead of updating these layers during finetuning, 

• Freeze these layers 

• Update a low-rank approximation with fewer parameters. 

LoRA (Low-Rank Adaptation)

58
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• Consider a matrix W (shape [N × d])  that needs to be updated during finetuning via gradient descent. 
• Norm ally updates are ∆W   (shape [N × d])

• In LoRA, we freeze W and update instead a low-rank decomposition of W:
• A of shape [N×r], 

• B of shape [r×d], r is very sm all  (like 1 or 2)

• That is, during  finetuning we update A and B instead of W. 

• Replace W  + ∆W  with W  + BA. 

• Forward pass: instead of 
    h = xW 
• We do
     h = xW + xAB 

LoRA
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LoRA
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Hallucination
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Copyright

63

63

D e a k in  U n iv e rs it y  C R IC O S  P ro v id e r  C o d e :  0 0 1 1 3 B

Privacy
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Toxicity and Abuse
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Misinformation
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